Tel:+86 021 37890322

Recent trends and future scope in the protection

Date:2017-04-21   View:2106

        Fire-fighters personal protective clothing is the only source of protection for fire-fighters during fire-fighting. The protective clothing should provide adequate protection as well as should be comfortable to wear. The protection and comfort requirements are always the contradicting fact in several protective clothing including fire-fighters'. Appropriate material selection, clothing design and final evaluation of the results play a critical role in predicting the clothing performance and comfort. Several researches have been done on the performance and comfort improvement of fire-fighter’s protective clothing.




        The protective clothing used for fire-fighting is requiredto shield the fire-fighters from all possible hazards that may be faced during the work and should provide thermophysiological comfort. These two requirements are always contradictory. The protective clothing is usually heavy, thick with multiple layers, which reduces water vapour permeability and heat exchange across layers from body to the environment. It results the wearer to face heat stress due to the high physical activity and excessive exposure to heat which overloads his metabolic system. Resolving this issue and getting a balance between protection and comfort will always be the area of future research.

        Nanotechnology can help to achieve improved protection and comfort, which are always a contradicting paradox. This technology can help to design protective clothing with light weight and less bulk, which can reduce the psychological strain related to heavy fabrics. Nanotechnology can help to use flexible textile sensors integrated to protective clothing to increase their functionality. New threats from chemical, nuclear and biological hazards can be better overcome by the use of this technology. However, the possible health and environmental hazards related to nanotechnology should be explored before their application.